• <meter id="11661"></meter>
  • <label id="11661"><video id="11661"><nobr id="11661"></nobr></video></label>
    1. <code id="11661"><u id="11661"><span id="11661"></span></u></code><output id="11661"><video id="11661"></video></output>
    2. <output id="11661"></output>
      1. <label id="11661"></label>
      2. <meter id="11661"></meter>

      3. 設(shè)為首頁 | 加為收藏    
        網(wǎng)站首頁 指數(shù)分類 資訊中心 行業(yè)資訊 指數(shù)解讀 采集點商鋪 指數(shù)團(tuán)隊簡介 指數(shù)論壇
          最新資訊
        “華龍一號”示范工程“心臟
        NASA計劃探測太陽系
        AI云判讀可撥云見“地”—
        深度學(xué)習(xí)并未走進(jìn)死胡同
        全球超級“WiFi”還遠(yuǎn)嗎
        5G時代三大電信運(yùn)營商能
        破解網(wǎng)絡(luò)黑產(chǎn)行業(yè)難題 京
        首款3D人臉識別票證閘機(jī)
        鋅碘單液流電池概念問世
        實體經(jīng)濟(jì)升級 將帶動工業(yè)
          聯(lián)系我們

        “中國·成都五金機(jī)電指數(shù)”
        工作小組

         地址中國·成都·金府路555號中國·萬貫機(jī)電城內(nèi)·電子商務(wù)大廈4樓·指數(shù)部
         電話028-61690086-6655
         傳真:028-87636056
         郵編:610036
         郵箱:index@wanguan.com
         客服QQ點擊這里給我發(fā)消息
        行業(yè)資訊
        深度學(xué)習(xí)并未走進(jìn)死胡同
        發(fā)布時間:2019-03-25
            核心提示:不久前,全球人工智能計算機(jī)視覺領(lǐng)域奠基人之一、約翰霍普金斯大學(xué)教授艾倫·尤爾拋出“深度學(xué)習(xí)(Deep learning)在計算機(jī)視覺領(lǐng)域的瓶頸已至”的觀點,引發(fā)業(yè)內(nèi)許多專家的共鳴和熱議。

           不久前,全球人工智能計算機(jī)視覺領(lǐng)域奠基人之一、約翰霍普金斯大學(xué)教授艾倫·尤爾拋出“深度學(xué)習(xí)(Deep learning)在計算機(jī)視覺領(lǐng)域的瓶頸已至”的觀點,引發(fā)業(yè)內(nèi)許多專家的共鳴和熱議。

          目前,作為實現(xiàn)人工智能的一種形式,深度學(xué)習(xí)旨在更密切地模仿人類大腦。那么,業(yè)內(nèi)專家學(xué)者是否認(rèn)同這種說法?作為人工智能技術(shù)的重要基礎(chǔ),深度學(xué)習(xí)在發(fā)展中究竟遇到哪些困難?如果深度學(xué)習(xí)瓶頸已至,我們該如何破解這個難題?帶著相關(guān)問題,科技日報記者近日采訪了中外人工智能的知名專家對尤爾教授的觀點深入解讀。
         
          深度學(xué)習(xí)精到之處
         
          最初,深度學(xué)習(xí)剛剛進(jìn)入大多數(shù)人工智能研究人員的視線時,被嗤之以鼻,但短短幾年后,它的觸角在諸多高科技領(lǐng)域延伸,橫跨谷歌、微軟、百度乃至推特等多家企業(yè)。
         
          很多高科技公司熱衷探索深度學(xué)習(xí)的一種特殊形態(tài)——卷積神經(jīng)網(wǎng)絡(luò)。卷積網(wǎng)絡(luò)是由相互連通的卷積層組成,與大腦中處理視覺信息的視覺皮層十分類似,不同之處在于,其可以重復(fù)使用一張圖像中多個位置的相同過濾器。一旦卷積網(wǎng)絡(luò)學(xué)會在某個位置識別人臉,也可以自動在其他位置識別人臉。這種原理也適用于聲波和手寫文字。
         
          業(yè)內(nèi)人士認(rèn)為,卷積神經(jīng)網(wǎng)絡(luò)可以使得人工神經(jīng)網(wǎng)絡(luò)能夠快速接受培訓(xùn),因為“內(nèi)存占用空間小,不需要對圖像中每個位置的過濾器進(jìn)行單獨存儲,從而使神經(jīng)網(wǎng)絡(luò)非常適合于創(chuàng)建可擴(kuò)展的深網(wǎng)(Deep nets)”。這也令卷積神經(jīng)網(wǎng)絡(luò)具有善于識別圖形的優(yōu)點。正是基于此,谷歌開發(fā)出安卓手機(jī)的語音識別系統(tǒng)、百度對可視化新型搜索引擎進(jìn)行研發(fā)。
         
          當(dāng)然,要讓卷積神經(jīng)網(wǎng)絡(luò)正常運(yùn)作需要功能強(qiáng)大的計算機(jī)和龐大的數(shù)據(jù)集,而其在收集數(shù)據(jù)或計算平均值時,效果并非十全十美。
         
          卷積神經(jīng)網(wǎng)絡(luò)的力挺者、臉譜(Facebook)人工智能實驗室負(fù)責(zé)人伊恩·勒坤表示,目前使用最廣泛的卷積神經(jīng)網(wǎng)絡(luò)幾乎完全依賴于監(jiān)督學(xué)習(xí)。這意味著,如果想讓卷積神經(jīng)網(wǎng)絡(luò)學(xué)會如何識別某一特定對象,必須對幾個樣本進(jìn)行標(biāo)注。而無監(jiān)督學(xué)習(xí)(Unsupervised learning)可以從未經(jīng)標(biāo)記的數(shù)據(jù)展開學(xué)習(xí),更接近人腦的學(xué)習(xí)方式。而在此基礎(chǔ)上開發(fā)的反向傳播算法,能有效使錯誤率最小化,只是不太可能體現(xiàn)出人類大腦的運(yùn)作機(jī)理。
         
          勒坤表示:“我們對大腦如何學(xué)習(xí)幾乎是完全陌生的。盡管人們已經(jīng)知道神經(jīng)元突觸能夠自我調(diào)整,但對大腦皮層的機(jī)理尚不明晰,所知道的最終答案是無監(jiān)督學(xué)習(xí)是一種更接近人腦的學(xué)習(xí)方式,但對于大腦的認(rèn)知機(jī)制卻無力解答。”
         
          瓶頸凸顯需警惕
         
          “雖然深度學(xué)習(xí)優(yōu)于其他技術(shù),但它不是通用的,經(jīng)過數(shù)年的發(fā)展,它的瓶頸已經(jīng)凸顯出來。”不久前,艾倫·尤爾指出。
         
          尤爾認(rèn)為,深度學(xué)習(xí)有三大局限:首先,深度學(xué)習(xí)幾乎總是需要大量的標(biāo)注數(shù)據(jù)。這使得視覺研究人員的焦點過度集中于容易標(biāo)注的任務(wù),而不是重要的任務(wù)。
         
          其次,深網(wǎng)在基準(zhǔn)數(shù)據(jù)集上表現(xiàn)良好,但在數(shù)據(jù)集之外的真實世界圖像上,可能會出現(xiàn)嚴(yán)重失敗。特別是,深網(wǎng)難以應(yīng)付數(shù)據(jù)集中不經(jīng)常發(fā)生的“罕見事件”。而在現(xiàn)實世界的應(yīng)用中,這些情況則會產(chǎn)生潛在風(fēng)險,因為它們對應(yīng)的視覺系統(tǒng)故障可能導(dǎo)致可怕的后果。比如,用于訓(xùn)練自動駕駛汽車的數(shù)據(jù)集幾乎從不包含“嬰兒坐在路上”的情況。
         
          第三,深網(wǎng)對圖像中的變化過度敏感。這種過度敏感不僅反映在對圖像中難以察覺變化的標(biāo)準(zhǔn)上,還反映在對上下文的變化上,由于數(shù)據(jù)集大小的局限,過度敏感會導(dǎo)致系統(tǒng)做出錯誤判斷,但這種因過度敏感而導(dǎo)致的圖像變化卻難以欺騙人類觀察者。
         
          例如,在一張叢林里有只猴子的照片中,PS上一把吉他。這會導(dǎo)致AI將猴子誤認(rèn)為人類,同時將吉他誤認(rèn)為鳥。大概是因為它認(rèn)為人類比猴子更可能攜帶吉他,而鳥類比吉他更可能出現(xiàn)在附近的叢林中。
         
          尤爾認(rèn)為,瓶頸背后的原因是一個叫做“組合爆炸”的概念:就視覺領(lǐng)域而言,從組合學(xué)觀點來看,真實世界的圖像量太大了。任何一個數(shù)據(jù)集,不管多大,都很難表達(dá)出現(xiàn)實的復(fù)雜程度。更何況每個人選擇物體、擺放物體的方式不一樣,搭出的場景數(shù)量可以呈指數(shù)增長。而這需要無限大的數(shù)據(jù)集,無疑對訓(xùn)練和測試數(shù)據(jù)集提出巨大挑戰(zhàn)。
         
          業(yè)內(nèi)專家表示,這三大局限性問題雖還殺不死深度學(xué)習(xí),但它們都是亟待需要警惕的信號。
         
          “已死”之說值得商榷
         
          去年,深度學(xué)習(xí)領(lǐng)域一位知名學(xué)者曾在臉譜發(fā)布驚人之語——深度學(xué)習(xí)已死,引起業(yè)內(nèi)一片嘩然,以至于現(xiàn)在網(wǎng)上機(jī)器學(xué)習(xí)社區(qū)的一些人說,搞深度學(xué)習(xí)是在走死胡同。
         
          “我認(rèn)為‘深度學(xué)習(xí)已死’這種說法,是出自那些曾經(jīng)極為看好深度學(xué)習(xí)、后來卻意識到其局限的業(yè)內(nèi)人士。而局限并不意味著這個事物已經(jīng)死亡,我們可以補(bǔ)充一些東西進(jìn)去。”法國泰雷茲集團(tuán)首席技術(shù)官馬克·厄曼向科技日報記者表示。
         
          “我不贊同‘深度學(xué)習(xí)已死’的提法。”新一代人工智能產(chǎn)業(yè)技術(shù)創(chuàng)新戰(zhàn)略聯(lián)盟聯(lián)合秘書長、科大訊飛副總裁兼AI研究院聯(lián)席院長李世鵬指出。
         
          李世鵬說,深度學(xué)習(xí)作為一個新的計算科學(xué)領(lǐng)域的方法,當(dāng)然有其自身的限制和缺陷。這個在外界被炒作成萬能的AI工具,其實科學(xué)界一直都很謹(jǐn)慎地對待,從一開始大家就知道它的一些局限性,比如對標(biāo)注了的大數(shù)據(jù)依賴、非解釋性、沒有推理功能、對訓(xùn)練集里包括的樣本就能工作得很好而對沒有包括的樣本就很差、系統(tǒng)模型處于非穩(wěn)態(tài)(相對人類智能而言,對抗擾動攻擊能力比較差)等。
         
          “我比較贊成尤爾教授的客觀說法——深度學(xué)習(xí)在計算機(jī)視覺領(lǐng)域的瓶頸已至,特別是他討論問題的這個時間點很有必要,在方向上有矯枉過正的提示作用。現(xiàn)在大家對深度學(xué)習(xí)熱衷得有些過度,在學(xué)術(shù)界,甚至在產(chǎn)業(yè)界,給人一種似乎‘非深度學(xué)習(xí)非AI’的感覺。實際上這是有很大問題的,因為深度學(xué)習(xí)確實只是人工智能領(lǐng)域里一個被實現(xiàn)出來的,卻比較窄的成功經(jīng)驗。”遠(yuǎn)望智庫人工智能事業(yè)部部長、圖靈機(jī)器人首席戰(zhàn)略官譚茗洲指出。
         
          總而言之,李世鵬表示,深度學(xué)習(xí)已死之說法值得商榷。在未來相當(dāng)一段時間里,深度學(xué)習(xí)會對人工智能發(fā)展起著積極推動作用,并具有很大的應(yīng)用價值,同時,科學(xué)家對深度學(xué)習(xí)天生的缺陷和局限已明晰,正在嘗試一些方法補(bǔ)足其現(xiàn)階段發(fā)展的不足,并在各自的領(lǐng)域內(nèi)探索著下一代人工智能的突破。
         
        “中國•成都五金機(jī)電指數(shù)”:http://www.peitelai.com
        來源:Gary
        0
         
        友情鏈接
        Copyright 2012-2013  , All Rights Reserved 中國成都五金機(jī)電指數(shù)網(wǎng) 版權(quán)所有 未經(jīng)允許不得轉(zhuǎn)載信息內(nèi)容、建立鏡像
        編制單位:中華全國工商業(yè)聯(lián)合會五金機(jī)電商會 成都市金牛區(qū)人民政府 成都萬貫集團(tuán) 合作單位: 浙江工商大學(xué)

        電話客服電話:028-87636056 傳真傳真:028-87636056 郵箱郵箱:index@wanguan.com 點擊這里給我發(fā)消息

        蜀ICP備11011566號 關(guān)注我們:000 4477
        日韩视频一区无码一区VR,无码在线一区二区,成人AV无码一区二区三区,亚洲日韩激情无码 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();